
A Minimalistic Approach to End-to-End Protection of Grid Job Payloads

Igor Sfiligoi
Fermilab, Batavia, IL, USA

sfiligoi@fnal.gov

Don Petravick
Fermilab, Batavia, IL, USA

petravic@fnal.gov

Abstract

The security mechanisms for Grid job submission
were designed under the assumption that users would
submit their jobs directly to remote Grid gatekeepers
handling the computing resources. However, in the
last several years direct submission has never been
the main submission mechanism in Grids like OSG
and EGEE, as most users prefer to submit their jobs
to a chain of intermediate workload management
systems (WMSes) instead. This introduces additional
security risks since any WMS can alter the job
payload, allowing for execution of arbitrary code in a
user's name. In this paper we describe the potential
attack vectors and outline a minimalistic end-to-end
conceptual solution, based on extensions to user
credentials, to contrast them.

1. Introduction

This paper describes a fundamental security risk
of the currently deployed Globus GRAM-based
Grids, like OSG[1] and EGEE[2], and proposes a
minimalistic conceptual end-to-end solution that
renders the users' job payloads tamper evident. The
proposed solution calls for changes in the endpoints
only, allowing for an incremental deployment on the
existing Grid infrastructure.

The main part of the paper is contained in the next
three sections. Section 2 describes the security risks
of the currently deployed infrastructure. Section 3
outlines a high level minimalistic end-to-end
proposal for solving the described problems. Section
4 provides a possible deployment scenario using
currently deployed tools.

The proposed solution does not attempt to solve
all the security problems introduced by a WMS chain
and the limitations are described in section 5. A short
discussion of related work is presented in section 6
and the proposed future work is presented in
section 7.

2. Security risks associated with WMS
chains

Computational Grids have become an essential tool
of many communities, like the High Energy Particle
Physics (HEP) collaborations ATLAS and CMS. This
interest has created job handling Grids like OSG and
EGEE that are composed of hundreds of independent
Grid sites. The sites range in size from tens to many
thousands of worker nodes.

The proliferation of Grid sites has made the direct
submission of user jobs impractical; selecting the site
that will finish a computational job first is far from
trivial. For this reason, most organized groups set up
a workload management system (WMS) for their
users. Example Grid WMSes are glideinWMS[3], the
gLite WMS[4] and the OSG ReSS[5].

2.1. Job submission path

Most users submit their jobs to a WMS. To allow
a WMS to forward a job to a Grid site, a user has to
delegate his/her credentials to the WMS. These
delegated credentials will be used by the WMS to
submit the user's job to a Grid site, or to another
WMS. User's credentials are thus delegated multiple
times until the job finally starts. In most cases, the
user's job itself will have access to the delegated
credentials; they are used by the job for access to
non-computational resources, such as storage
elements. See Figure 1 for an overview.

The currently deployed infrastructure is based on
X.509 proxy certificates[6]. The user will thus use
the proxy delegation mechanisms to delegate his/her
personal certificate. However, in all currently
deployed implementations the delegation is
unrestricted; the receiver of the delegated proxy
impersonates the user and can effectively perform
any action the user can. This requires a strong trust
relationship between the user and the credentials'
receiver in order not to be abused. There are two
issues with this setup: the administrative overhead of

1

establishing such trust relationship, and the
potentially serious consequences associated with a
security compromise of the credentials' handing
service, like a WMS.

Moreover, the delegated proxy certificate does
not contain the identities of the entities involved in
the delegation chain. If a breach of trust is
discovered, it can be very difficult to trace where it
originated. Most of the time the only available data
are the network related information of the last
delegation step, like the protocol used, the IP address
and the originating port.

2.2. The malicious WMS use case

This section describes what happens if a job is
delegated to a WMS that is not trustworthy. This
could happen both because of a security compromise
of a trusted WMS and because the WMS was
intentionally set up with malicious intents; most of
the current Grid information providers do not require
an advance establishment of trust to advertise a
WMS.

Figure 2 outlines this use case; the malicious
WMS can replace the job payload and forward it to
the next element in the chain. In Figure 2 the
malicious WMS was intentionally positioned in the
middle of the delegation chain to clearly illustrate
that neither the user nor the worker node may be
aware of it. However, any WMS in the chain can
abuse the trust, including the first and the last one.

This paper assumes that the end points can be
trusted. Users must be trusted, as the Grid services
have no way to distinguish between a legitimate and
a malicious user; for example, a user cracking
encrypted messages on computing resources being

granted for genomic research. The worker node must
be trusted too; if the worker node wants to run
arbitrary code, it can do it at any time, without
waiting for a job payload to compromise. The access
to non-computing resources is beyond the scope of
this paper, and will non be considered in this section.
This and other attack vectors not pertinent to this
paper are outlined in section 5.

 Let now analyze what is in the job payload, and
what harm can come from altering of the job
payload. A user will submit his/her jobs using the
client tools provided by the WMS of choice. Each
tool provides a proprietary job description language
(JDL) that the user has to use to transmit the job
payload to the WMS. Since no common JDL exist, in
this paper we decided to use a minimalistic pseudo-
language to describe the job payload. While we do
not provide a formal definition of the pseudo-
language, the examples are kept simple enough to be
understandable. The notation used was selected to be
clear and compact.

Job payloads handled by the WMSes in the
considered Grids are typically composed of the
following four groups of elements:

1) A file to be executed or the name of a file local
to the worker node to be executed. Possible
examples are a simulation binary executable
file, a startup shell script, and the name of the
local file, like “/bin/ls”.

2) A (possibly empty) list of command line
argument. Each argument is a string and the
order of the arguments is important. A possible
examples is “-d”,“data.cfg”,”-f”,”log.out”.

3) A (possibly empty) set of environment
attributes. Each attribute is composed of a pair
containing an attribute name and an attribute

2

Figure 2. A malicious WMS use case

WN

WMS 1 WMS n

WMS 2

...

U
CrdJP

ld

Data
store

M
Pld

UCrd

JPldU
Crd

M
Pld

U
Crd

UCrd

UCrd

UCrd

UCrd

UCrd

Acronyms:
JPld - Job payload
MPld - Malicious payload
UCrd - User credentials

Colors:
Delegate
Authenticate

Figure 1. Submission path of a job

WN

WMS 1 WMS n

WMS 2

...

U
CrdJP

ld

Data
store

JP
ld

UCrd

JPldU
Crd

JPldU
Crd

UCrd

UCrd

UCrd

UCrd

UCrd

Acronyms:
JPld - Job payload
UCrd - User credentials

Colors:
Delegate
Authenticate

value. The order of the attributes is not
important, but all attribute names must be
distinct. An example attribute pair is
“LD_LIBRARY_PATH”,“./mysubdir:/usr/lib”.

4) A (possibly empty) set of input files. Each
input file is composed of a file name (relative
to the job startup directory if directory
traversal is permitted at all) and file content.
The order in which the files are specified is not
important, but the name of the files must be
distinct. An example input file name is
“data.cfg”. A complete example file content is
not provided for space reasons, but since it
may be useful for discussions, we will use a
shorthand like <config data>.

See Figure 3 for an example job payload.
For the purpose of this paper, files staged-in by

the user-specified executable after it started running
on the worker node are not part of the job payload. It
is assumed that the user has applied due care for all
the actions of his/her job. Only elements that are
transported to the worker node before the job starts
are analyzed, because the user has no choice but trust
the WMS chain for that task.

Obviously, all of the components of a job payload
could be changed by a malicious WMS. The most
obvious alteration involves the replacement of the
executable. For example, instead of forwarding the
user provided simulation executable, a spamming
engine could be sent to the worker node, with
obvious consequences.

Alteration of command line arguments can also
lead to execution of malicious code. An example use
case involves the user submitting a job to analyze a
virus code. The job payload specifies the local
executable “/usr/bin/python” and two command line
arguments; “analyze.py” and “virus.py”. If a
malicious WMS in the chain inverts the order of the
argument, a worker node will execute the virus
instead of analyzing it.

Changing the environment attributes or the input
files can create similar problems. An example use
case involves a user submitting an executable that
requires the shared library “sgml-filter.so” and

defines the environment attribute
“LD_LIBRARY_PATH” to be “/usr/lib/aspell:/lib”.
If a malicious WMS in the chain changes the attribute
value to be “.:/usr/lib/aspell:/lib” and adds a file with
the name “sgml-filter.so” and malicious code content
to the job payload, when the worker node runs the
specified executable, the malicious shared library is
loaded, resulting in running malicious code.

The above mentioned examples clearly show that
the current operation mode of the Grid infrastructure
poses a real security risk both for the users and for
the resource providers. To minimize this risk, the
only tool available today consists on building strong
trust relationships both between the providers of
WMS services and users, and between the providers
of WMS services and resource providers.

3. Reducing the risk of WMS chains

Requiring all WMS services to be highly trusted
may be difficult to achieve in practice. WMSes are
often run by power users in a group of people
working on a common project; constant security
monitoring and patching is often too big of a burden
and is not done. Moreover, Grid WMS software is
still an active research area, with many new products
being developed and deployed; as with all rapidly
evolving products, new security vulnerabilities could
get into the code base at every new release.

To make things worse, most WMS installations
will handle jobs from hundreds of users. So a single
WMS compromise would allow an attacker to
manipulate the jobs of hundreds of users. This makes
any WMS installation a highly desirable target.

This section proposes a minimalistic end-to-end
conceptual solution that will allow for the detection
of job payload alterations and thus significantly
reducing the risk associated with WMS chains.

3.1. Linking user's credentials to the job
payload

Of all the data that the WMSes in the delegation
chain handle, only one cannot be altered without
detection; the user's delegated credentials. We thus
propose that the user embeds a description of the job
payload directly in his/her own credentials, before
delegating them to any party. This solution is easy to
implement and makes the job payload tamper
evident.

Since the job specific user credentials[7] are tied
to the job payload submitted by the user, if a
malicious WMS tries to alter the job payload en-

3

Executable: <simulation binary>
Cmd args: “-f”, “in.tgz”, “-out”, “out.tgz”
Env args: (“SIM_CONFIG”,”run13.cfg”),

(“LD_LIBRARY_PATH”,”.:/lib”)
Input files: (“in.tgz”,<input tarball>),

(“run13.cfg”,<simulation config>),
(“libsim.so”,<shared library>)

Figure 3. An example job payload

route, the worker nodes will be able to detect it, and
refuse to execute it, as shown in Figure 4.

Note that from a security perspective, only the
execution endpoints, i.e. the worker nodes, are
required to understand and validate the payload
embedded in the delegated credentials, because there
is no functional requirement for the WMS to perform
any of the job integrity validation. Having to update
only the endpoints, i.e. the user submission tools and
the WNs, will ease the deployment migration to this
new feature.

3.2. Embedding attributes into a X.509 proxy
certificate

X.509 proxy certificates support the notion of
limiting the proxy certificate by embedding one or
more attributes with a set of restrictions. The
embedding process uses the original proxy private
key to sign the new proxy, thus making the newly
embedded attributes tamper-proof. See Figure 5 for
an overview.

Each attribute can be labeled either critical or non-
critical. Critical attributes technically limit the proxy
as they must be interpreted by any proxy handler,
with authorization failing if the attribute cannot be
interpreted. Non-critical attributes, on the other
hand, can be ignored by any proxy handler that does
not recognize them, so they are technically just
extending the proxy.

Nevertheless, non-critical attributes can be used
for authorization purposes by a subset of proxy
handlers, effectively limiting the actions of a proxy

holder. This is especially useful when the restrictions
are not applicable to every possible action a proxy
holder can perform, but just to a subset of them.

The job specific user credentials we are proposing
fall into this second category; only the the execution
endpoints need to understand the attribute containing
the job payload description, all other credentials
handlers, like WMSes, databases, and storage
elements, can safely ignore it. For this reason we are
proposing to embed a non-critical attribute into the
job specific proxy that will be forwarded to the
WMSes.

3.3. Job payload description

As mentioned in Section 2.2, each WMS client
tool uses its own job description language (JDL). It
would thus be impractical to embed in the
credentials the unmodified job description as
specified by the user, because it would require the
execution endpoints to understand the JDLs of all the
possible submission nodes. For the purposes of this
paper, we will thus use a pseudo-language,
containing only the strict minimum amount of
information needed to achieve our security goals. A
real implementation will obviously need a formally
defined language, but defining a specific language
that would be acceptable for all the endpoint
implementations is beyond the scope of this paper.

The job payload description must contain enough
information to allow for reliable integrity checking.
However, since it will be embedded in the user
credentials, whose attributes are world readable,
special care must be taken to protect the
confidentiality of the job payload; the public part of
the proxy should not reveal the content of the job
payload. Some communities, like the medical
community, have very strict confidentiality and
privacy requirements.

It should be noted that the above requirement only
protects from deducing the job payload content from

4

Figure 4. Malicious payload is detected

WN

WMS 1 WMS n

WMS 2

...

JC
rdJP

ld

Data
store

M
Pld

JC
rd

JPldJCrd

M
Pld

JCrd

JCrd

JCrd

JCrd

JCrd

Acronyms:
UCrd - User credentials
JCrd - Job specific

 user credentials
JPld - Job payload
MPld - Malicious
payload

Colors:

Delegate

Authenticate

Embed

JCrd

JPld
sign.

Ucrd

Figure 5. Attribute embedding

DN = user1
Attr1= xyz
Public key1
Signature 0

Private key1

Proxy1

Attr2=Limit2
Public key 2
Signature 1

Embed
Attr2=Limit

Private key2

Proxy2

and sign
with

Private key

DN = user1
Attr1= xyz
Public key1
Signature 0

the credentials and does not protect the users from a
malicious WMS obtaining the job payload itself; we
acknowledge this limitation in section 5 and delegate
the solution to this problem to other tools.

A good way to keep the job payload tamper
evident while maintaining confidentiality is to use a
secure cryptographic hash mechanism, like SHA1.
We thus propose to compute the hash values of each
and every element of the job payload and use the
hash values instead of the original values in the
pseudo-description embedded into the job specific
user's credentials. The pseudo-description of the
example job payload from Figure 3 is shown in
Figure 6.

A critical user could observe that hashing every
element separately reveals more information about
the job payload, like the number of command line
arguments and the number of files. It also allows for
brute force attacks on the confidentiality of short
strings, like is the case for many command line
arguments. It also uses up more space compared to
hashing the job description as a whole.

We are well aware of these facts, but have chosen
this approach for two reasons:

1) It allows for future extensions; if a new
attribute type will be added in the future,
already deployed execution endpoints can
continue to validate the known part, easing the
deployment migration.

2) It allows for partial description of the job
payload. The user may want to protect the
integrity of only the critical elements of the job
payload and allow a WMS to change some of
the others.

The use case of a WMS changing part of the user's
job payload is actually a widely deployed one. For
example, the OSG ReSS WMS allows for site
specific substitution macros. Passing the name of the
storage element nearest to the site is an example
valid use case.

3.4. Allowing for partial WMS job payload
manipulation

It is conceivable that users may want to use the

full WMS matchmaking potential, and for example,
ask the WMS to select the appropriate binary for the
CPU architecture of the target worker node. The
above mentioned ReSS WMS can do this today.

The simple job payload description introduced in
the previous section would leave the user in the
position of having to choose between security and
flexibility; the WMS can only select a binary if the
user does not sign the executable element. Having to
sacrifice security for flexibility is obviously not
desirable.

The above use case can be solved by putting into
the job payload description the hash values of all the
acceptable executables; it is reasonable to expect that
any user will know what those executables are at
submit time. A similar reasoning can be applied to
all other elements of the job payload.

To better illustrate the concept, let us consider a
new use case, by expanding on the original example
job. We add the possibility for the job to run on
different CPU architectures and different operating
systems. The executable and the shared library
obviously need to be CPU specific. Moreover,
depending if the resource is part of the WMS XYZ
group or not, a different configuration file is used.

Figure 7 shows what would be presented to the
WMS using our pseudo-language.

The associated job payload description will be
very similar, but stripped of all the decision
semantics; only the available choices are preserved.
The reason we do this is because not all directives
can be interpreted at the execution endpoints. For

5

Executable: (file,sha1:a1..72)
Cmd args: sha1:9e..87, sha1:3d..a2,

sha1:c9..ce, sha1:fe..02
Env args: (sha1:d0..92,sha1:26..ab),

(sha1:95..54,sha1:10..f5)
Input files: (sha1:3d..a2,sha1:fa..23),

(sha1:26..ab,sha1:01..2f),
(sha1:13..9c,sha1:7a..12)

Figure 6. Pseudo-description of the
example job payload

Executable: on_CPU{x86:<binary1>,
SPARC:<binary2>,
POWER:<binary3>}

Cmd args: “-f”, “in.tgz”, “-out”, ${jobid}.tgz
Env args: (“SIM_CONFIG”,”run13.cfg”),

(on_OS{Linux:“LD_LIBRARY_PATH”,
AIX:“LIBPATH”},

”.:/lib”)
Input files: (“in.tgz”,<input tarball>),

(“run13.cfg”,if IsXYZ then <config1>,
else <config2>),

on_OS{x86:(“libsim.so”,<sh.lib.1>),
SPARC:(“libsim.sl”,<sh.lib.2>),
AIX:(“libsim.o”,<sh.lib.3)}

Figure 7. An example dynamic job payload

example, the execution endpoints have no way to
know if they are part of the XYZ group or not; it is
better to just list the available choices. Similarly,
semantics of the specific directive for defining the 4th

command line argument is WMS specific, so the
endpoints cannot validate it. It is better for the user
to just blindly trust the WMS and simply not sign
that element. We apply the same logic for
consistency to all the other elements, although one
could argue the OS and CPU checking could be
preserved.

The resulting pseudo-description is presented in
Figure 8.

4. An example of a possible real world
deployment scenario

To allow the reader a better understanding of the
conceptual proposal outlined in section 3, this
section describes a possible real world deployment
scenario. The presented example includes possible
extensions to existing tools; we cannot and we do
not claim that this will be the actually implemented
solution.

The deployment scenario we are presenting is
based on the OSG Grid and using glideinWMS
WMS. This choice is due solely to the fact that the
authors are very familiar with this setup. Examples
with other Grids and other WMSes would be equally
representative.

4.1. The glideinWMS in OSG

The glideinWMS[3] is a pilot-based WMS based
on the Condor batch system[8]:

● The glideinWMS is defined by a
condor_collector, an information collection
process.

● Users use the condor_submit client tool to
submit their jobs to one of the condor_schedd
processes; each condor_schedd holds a job
queue and handles the received user payloads.

● The computing resources are gathered
asynchronously by means of pilot jobs; the
glideinWMS uses Condor-G to submit pilot
jobs to various Grid sites, using special pilot
credentials. Each pilot job contains a
condor_startd daemon; when a pilot job starts
on a worker node, it contacts the
condor_collector.

● After a matchmaking process, the
condor_schedd delivers a user job to the
condor_startd.

● The condor_startd invokes the local
gLExec[9] privileged executable to identify the
user and run the job.

In this scenario, the only fully trusted elements
are the endpoint nodes; software wise, the
condor_submit client tool on the submit side, since
it is under user control for the whole duration of the
job submission, and the gLExec privileged
executable on the execution side, since it is installed
and maintained by the worker node administrator.
These are thus the only pieces that need to be
changed in order to guarantee end-to-end integrity of
the job payloads.

4.2. Changes to condor_submit

Today, condor_submit parses a Condor submit
file and uses it to create a job payload description
using the ClassAd language. It then uses the user
proxy to authenticate to a condor_schedd; after the
connection has been established, it sends over the job
ClassAd, the input files and finally delegates the user
proxy. The condor_schedd returns a job number and
condor_submit terminates; the user can now destroy
the proxy used by condor_submit . However, the
delegated proxy and the job payload are held by the
condor_schedd for an extended period of time; a
compromise allows an attacker to replace the user
job payload with a malicious one at any time.

To implement the security feature described in
section 3, the condor_submit command needs to be
changed so that after parsing the submit file, it first
creates a new job specific user proxy; all the
elements that are fully specified by the user are
converted in hash values and embedded into the
proxy. The newly created job specific user proxy is
then used for authentication and is also the one being

6

Executable: oneof{(file,sha1:a1..72),
(file,sha1:1f..80),
(file,sha1:02..ff)}

Cmd args: sha1:9e..87, sha1:3d..a2,
sha1:c9..ce, any

Env args: (sha1:d0..92,sha1:26..ab),
(oneof{sha1:95..54,sha1:9e..bc},
 sha1:10..f5)

Input files: (sha1:3d..a2,sha1:fa..23),
(sha1:26..ab,oneof{sha1:01..2f,

sha1:f9..8a}),
oneof{(sha1:13..9c,sha1:7a..12),

(sha1:99..c8,sha1:f1..23),
(sha1:18..1b,sha1:a2..88)}

Figure 8. Pseudo-description of the
example dynamic job payload

delegated to the condor_schedd; the original
(unrestricted) user proxy is not used anymore, and
could be destroyed immediately after the job specific
one was created.

4.3. Changes to gLExec

Today, gLExec is the site-trusted custodian of a
worker node for the pilot-based jobs. A user is only
held responsible for the code running on the worker
node, if gLExec itself started it. gLExec is a
privileged executable that expects a user proxy, a
user binary and the user command line arguments as
its input; once the user is authenticated and
authorized, it cleans the environment, switches to the
appropriate local account, copies the user proxy in a
location readable only by the local account, and
executes the provided user binary and arguments.

As you may notice, the currently deployed
gLExec does not have any support for handling user
specified environment attributes nor for user
provided input files. The condor_startd gets around
this limitation by submitting a Condor-specific
wrapper script that does the trick. Exact details are
beyond the scope of this paper, but it is clear that the
currently deployed gLExec allows for execution of
code that was not provided by the user; if the
wrapper script ran malicious code, the user would be
held responsible.

To implement the security feature described in
section 3, gLExec (or equivalent tool) must be:

1) Extended to support natively at least the four
job payload groups listed in section 2.21.

2) Extended to understand the new proxy
attribute and perform the needed integrity
checks.

Once all the job payload is exposed to gLExec, it
can compute the hash values of all the elements and
compare them to the job description embedded in
the job specific user proxy; if even one of them does
not match, gLExec will refuse the request to run the
job. The job payload tampering by any process of the
glideinWMS will thus result only in the job not
being run. This also implies that the pilot can't use
any wrapper around the user jobs.

5. Limits of the current proposal

Our proposal does not claim to solve all the
security problems introduced by the introduction of
a WMS chain in the jobs submission workflow.

1 Requirement #1 will require also the change to the pilot
infrastructure, but this is just due to the current design decisions of
gLExec, and is not directly security driven.

Indeed, it only addresses the problem of
accountability of job payloads executing on trusted
nodes.

To the best of our knowledge, the other problems
introduced by the use of WMS chains, and not
covered by out proposal, are:

1) A malicious WMS can decide not to protect
the confidentiality of the job payload.

2) A malicious WMS can alter the output
sandbox of a finished job, returning to the
user a modified result.

3) A malicious WMS can use the user's
credentials to access non-computing
resources, like storage elements and
databases. The job specific user credentials
are as permissive as the current (unrestricted)
user credentials.

4) A malicious WMS can accept a job and never
forward it to any computing resource.

5) A malicious WMS can forward multiple
copies of the same job.

6) A malicious WMS can forward a job to
computing resources that the user explicitly
said should not be used.

Problem #1 affects the confidentiality of the job
payload. Problems #2 and #3 affect the integrity and
confidentiality of user's data. Problems #4, #5 and #6
affect the availability of computing resources. While
we fully acknowledge that all of the above are
important problems, our intention was to provide a
minimalistic solution that protects the job payloads
end-to-end and that is easy to implement with
minimal changes to the currently deployed
infrastructure.

6. Related work

The risk of the delegation of unrestricted users
credentials have been recognized contextually with
the introduction of the X.509 proxy certificates.
However, the only protection in use today is the
lifetime restriction; proxy certificates are supposed
to be short lived, in order to minimize in the time
dimension the amount of damage a stolen proxy can
do. Unfortunately even this is difficult to use in
practice, as it is not unusual for a job to take several
days, or even weeks, from submission to completion.

Task-specific proxies have been introduced in the
context of Condor[7] by I. D. Alderman and M.
Livny. While this work is closely related to that, we
downsized that proposal to the bare minimum
requirements needed to ensure end-to-end protection
of the job payloads in the analyzed Grids. By
providing a minimalistic proposal, we hope to

7

provide a base discussion platform involving all
current endpoint providers, that will result in a
deployable system in the near future.

D. Snelling et. al. [10] have proposed in the
context of UNICORE a mechanism similar to ours
that is also based on integrity checks of job payload.
While similar, it is UNICORE specific and not
directly portable to GRAM-based Grids, like OSG
and EGEE.

7. Future work

This paper has presented only a conceptual
solution to the problem of end-to-end protection of
the job payloads. In particular, we used a pseudo-
language to describe the job payload. In order to
implement such a solution, a formal language must
be selected, either among existing ones or by
defining a new one.

If our proposal is well received by the Grid
community, we plan to work with the interested
parties on the selection of such a language. We will
also select and register an appropriate X.509 OID to
hold the job description. The results should be
submitted to a standards body to facilitate full
interoperability across a wide range of
implementations.

Furthermore, since the authors are involved in the
development of pieces of Grid middleware, we will
work on the implementation of the emerged standard
in our products.

8. Conclusions

The introduction of WMS chains in the Grid job
submission workflow has introduced additional
security risks. One of the major risks comes from the
possibility of any WMS in the chain to alter any
user's job payload, possibly resulting in the
execution of malicious code in the user's name.

In this paper we examined the possible abuse
cases and presented a conceptual solution based on
job specific user credentials. The proposed solution
could be easily implemented by modifying the
trusted endpoints only, allowing for a staged
deployment.

We acknowledge that the proposed solution will
not solve all the security risks introduced by the use
of a WMS chain for job submission, but we decided
to opt for a minimalistic solution that is easy to
implement but still remediates an important security
vulnerability.

It is worth noting that while this paper worked
within the context of Globus GRAM-based job

processing Grids, like OSG and EGEE, most of the
high level concepts presented should apply to any
job processing Grid.

9. Acknowledgments

Fermilab is operated by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359
with the United States Department of Energy.

The authors thank Ian D. Alderman and Frank
Siebenlist for all the good ideas that helped shape
this paper.

10. References

[1] Ruth Pordes, et. al., “The open science grid”, Journal of
Physics: Conference Series 78 , Institute of Physics
Publishing, 2007 (15pp),

[2] Home page of the EGEE project, http://www.eu-
egee.org, Accessed April 2008.

[3] I. Sfiligoi, “ Making science in the Grid world: using
glideins to maximize scientific output”, Nuclear Science
Symposium Conference Record, 2007. NSS '07. IEEE 2,
Honolulu, HI, USA, 2007, pp. 1107-1109.

[4] P. Andreetto et. al., “Practical approaches to grid
workload and resource management in the EGEE project”,.
Proceedings of CHEP’04, Interlaken, Switzerland, 2004.

[5] “OSG Resource Selection Activity”, https://twiki.
grid.iu.edu/twiki/bin/view/ResourceSelection/WebHome,
Accessed April 2008.

[6] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M.
Thompson, “Internet X.509 Public Key Infrastructure (PKI)
Proxy Certificate Profile”, RFC 3820, 2004.

[7] I. D. Alderman and M. Livny, “Task-specific restricted
delegation”, HPDC '07: Proceedings of the 16th
international symposium on High performance distributed
computing, Monterey, CA , USA, 2007, pp. 243-244.

[8] D. Thain, T. Tannenbaum, and M. Livny, "Distributed
Computing in Practice: The Condor Experience"
Concurrency and Computation: Practice and Experience,
Vol. 17, No. 2-4, 2005, pp 323-356.

[9] D. Groep, O. Koeroo, G. Venekamp, “David Groep,
Oscar Koeroo, Gerben Venekamp”, To be published in
Journal of Physics: Conference Series (JPCS) CHEP2007,
Preprint: http://www.nikhef.nl/grid/lcaslcmaps/glexec/
glexec-chep2007-limited.pdf

[10] D. Snelling, S. Van Den Berghe, V. Li, “Explicit Trust
Delegation: Security for Dynamic Grids”, Fujitsu Sci Tech
J Vol 40 No 2, 2004, pp. 282-294.

8

